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Abstract
The space of states of PT -symmetric quantum mechanics is examined. The
requirement that eigenstates with different eigenvalues must be orthogonal leads
to the conclusion that eigenfunctions belong to a space with an indefinite metric.
Self-consistent expressions for the probability amplitude and the average value
of operator are suggested. Further specification of the space of state vectors
yields a superselection rule, redefining the notion of the superposition principle.
An expression for the probability current density, satisfying the equation of
continuity and vanishing for the bound state, is proposed.

PACS numbers: 02.30.Tb, 03.65.Ca, 03.65.Ta

1. Introduction

A conjecture of Bessis and Zinn-Justin [1] states that the eigenvalues of the Schrödinger
operator with potential ix3 are real and positive. Bender and Böetcher [2] suggested that the
reason for the absence of complex eigenvalues of this non-self-adjoint operator could be the
PT symmetry, where P is space reflection and T is time reversal. Using numerical methods
and semiclassical approximation, they found that the spectra of the Hamiltonians with the
potential ixN , N � 2 are real. The conjecture [1, 2], and the numerical validation [2] have
provoked considerable interest in recent years (see e.g. [3–12]). Lately, the conjecture of Bessis,
Zinn-Justin, Bender and Böetcher was justified using interrelations between the theories of
ordinary differential equations and integrable models [8]. This approach, based on symmetry
considerations, seems highly promising for identification of non-Hermitian Hamiltonians with
real spectra.

Although the proof of the conjecture [2] is still lacking, it is reasonable to question whether
or not there exists a self-consistent interpretation of the PT invariant Hamiltonian problem.

Assuming that the spectrum of the Hamiltonian under consideration is real, we shall
pursue the problem of interpretation of PT -symmetric quantum mechanics. We shall take for
granted that the ‘one half of the interpretation’, namely that the eigenvalues are real, is already
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obtained, and shall concentrate on its ‘other half’—a probabilistic interpretation in terms of
the solutions ψ . We shall not assume that the solutions of the Schrödinger equation are
eigenfunctions of PT , i.e. in general PT ψ(x) ≡ ψ�(−x) �= eiωψ(x).

We shall consider a Schrödinger equation in one dimension with a PT invariant potential
PT V (x) ≡ V �(−x) = V (x) and with a non-vanishing imaginary part—Im V (x) �= 0. We
shall assume that the Schrödinger equation with this V (x) can be solved with x on a real line
R : −∞ � x � ∞, i.e. we do not use an analytic continuation in the complex-x plane as
done in [13]. For example, this assumption is valid not for potentials of the form (ix)2N+1 but
for potentials of the form (ix)2N with N � 2 [14].

Average values of operators in a PT invariant field theory were investigated in [9] using
analytic continuation in a complex-φ̂ plane, where φ̂ is a field operator. Since we consider a
zero-dimensional counterpart of non-relativistic field theory on a real line, we cannot use an
approach based on a Fokker–Planck probability [9].

The paper is organized as follows. In section 2 we shall use the requirement that the state
vectors corresponding to the different eigenvalues should be orthogonal to establish that the
space of state vectors F is a space with an indefinite scalar product. Also, as an example
of constructing quantum mechanical quantities in PT -symmetric quantum mechanics, we
introduce probability current density.

In section 3 we shall review the basics of the theory of indefinite metric spaces and show
F to be a special case. Namely, it turns out that F is a Krein space, decomposable into an
orthogonal sum of two Hilbert spaces with positively and negatively defined scalar products
respectively.

The probability amplitude and operator averages are introduced in section 4. It is shown
that defining amplitude and average values in terms of vectors belonging to F is free from
inconsistencies and that the Heisenberg operator equations are satisfied.

Results are discussed in section 5.

2. Orthogonality of state vectors: space with an indefinite metric

The combined space reflection and time reversal operator θ ≡ PT is defined as [15]

θ{ i, x̂, p̂}θ−1 = { −i,−x̂, p̂}. (1)

An operator Â is θ invariant if θÂθ−1 = Â, i.e. when [θ̂ , Â] = 0, the latter valid for the vectors
of space in which both Â and θ̂ can be simultaneously defined.

We consider a Schrödinger equation on a real line:

Ĥψ(x) =
(

− ∂2

∂x2
+ V (x)

)
ψ(x) = Eψ(x) (2)

with V �(−x) = V (x), Im V (x) �= 0 and Im E = 0. Let us address the question about the
nature of the space of state vectors F 	 ψ and the existence of a satisfactory interpretation in
terms of ψ .

As a starting point in analysing F we consider the eigenvalue equations Hψα = Eαψα ,
Hψβ = Eβψβ . From θV (x) ≡ V �(−x) = V (x) it follows that the solutions of (2) are ψ(x)

and ψ�(−x) which, in turn, leads to the relation

(Eα − Eβ)

∫
R

dx ψα(x)ψ
�
β(−x) = 0. (3)

In (3) it is already assumed that Im E = 0; if eigenvalues are complex, Eα − Eβ has to be
replaced by Eα − E�

β .
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One of the cornerstones of the interpretation is that it is impossible to measure two different
eigenvalues for the same state [15]. Therefore, probability is defined in accordance with the
requirement that there is no transition between the eigenstates with different eigenvalues [15].
In order to maintain in θ -symmetric quantum mechanics the feature that the transition
probability between the eigenstates with different eigenvalues vanishes, let us suggest that
the transition probability amplitude in θ -symmetric quantum mechanics is

(ψα|ψβ) ≡
∫

R
dx ψα(x)(θψβ(x)) =

∫
R

dx ψα(x)ψ
�
β(−x); (4)

in other words, we postulate that F is a linear space with the scalar product (4). Relations (3)
and (4) imply that (ψα|ψβ) = 0 when Eα �= Eβ .

Another way to introduce the scalar product (4) is as follows. Let both the Sturm–
Liouville operator Ĥ and the eigenvalue E be invariant under arbitrary transformation �, i.e.
let �Ĥ(x)�−1 = Ĥ(x) and �E = E. Then, instead of starting from (4), one could postulate
that the scalar product in F is defined by

(ψα|ψβ) =
∫

R
dx ψα(x)(�ψβ(x)). (5)

When the Hamiltonian is Hermitian (Im V (x) = 0), definition (5) leads to the familiar
expression for the scalar product in a Hilbert space: (ψα|ψβ)H = ∫

R dx ψα(x)ψ
�
β(x) ≡

〈ψα|ψβ〉. The difference between 〈ψα|ψβ〉 and (ψα|ψβ) is determined by the symmetry
properties of the Hamiltonian: from the hermiticity of the Hamiltonian it follows that the
scalar product is 〈ψα|ψβ〉, and for a θ invariant Hamiltonian the scalar product, satisfying the
requirement of orthogonality for ψα and ψβ , is defined as in (4).

When V (x) is θ invariant and Im V (x) �= 0, ψ�(x) is not the solution of (2) and as a result
〈ψα|ψβ〉 is no longer orthogonal:

(ψα|ψβ)H ≡ 〈ψα|ψβ〉 =
∫

R
dx ψ(x)αψ

�
β(x) �= 0. (6)

This relation is an evident consequence of V (x) �= V �(x).
Since in the case of θ invariant Hamiltonian ψα and ψβ are orthogonal with respect to

the scalar product (4), (ψα|ψβ) = 0 for Eα �= Eβ , one is tempted to interpret the scalar
product (4) as the transition probability amplitude between the two states described by the
vectors ψα and ψβ . This will lead to a satisfactory result—the transition probability between
the states ψα and ψβ (for Eα �= Eβ) is zero, as it should be for a physical state [15].

Scalar product (4), respecting orthogonality for the different eigenvalues, is defined in
terms of ψ(x) and ψ�(−x). As an example of using (|) instead of the one defined in Hilbert
space, 〈|〉, let us consider the diagonal form (ψ |V |ψ). Note that when V is a θ invariant
operator, (ψ |V |ψ) is real:

Im (ψ |V |ψ) = Im
∫

R
dx ψ(x)V (x)ψ�(−x)

=
∫

R
dx ([Reψ(x)Reψ(−x) + Im ψ(x)Im ψ(−x)]Im V (x)

+[Reψ(−x)Im ψ(x) − Reψ(x)Im ψ(−x)]ReV (x)) = 0 (7)

which follows from ReV (x) = ReV (−x), Im V (x) = −Im V (−x). The relation (7)
resembles the one used in quantum mechanics: Im 〈ψ |V |ψ〉 = 0 for self-adjointV † = V [15].

As another example let us consider the following expression:

j (x) = ψ(x)
∂θψ(x)

∂x
− θψ(x)

∂ψ(x)

∂x
. (8)
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It is straightforward to verify that when θV (x) ≡ V �(−x) = V (x), equation (2) leads to a
continuity equation for j :

∂j (x)

∂x
= 0. (9)

If one uses ψ�(x) instead of θψ(x), the continuity equation fails: ∂j (x)/∂x ∼ Im V (x) �= 0
(since it is assumed that Im E = 0, we do not consider unstable states). Symmetry of the
Hamiltonian suggests that j (x) should be defined as a bilinear form of ψ(x) and θψ(x).

If j (x) represents the probability current density, it has to satisfy the condition that for the
bound state j (x) = 0. Let us impose on a θ -symmetric problem (2) the boundary condition,
similar to the bound state condition for the Hermitian case,

ψ(±∞) = 0. (10)

Note that the well known feature of non-degeneracy of a one-dimensional motion [15] is
retained—if ψα(x) and ψβ(x) satisfy equation (2) and boundary condition (10) with the
same eigenvalue, then ψα(x) = cψβ(x) with c constant (at this point it is not necessary
for eigenvalues to be real). When Im V �= 0, the real and imaginary parts of ψ do not satisfy
the same equation; therefore, non-degeneracy does not lead to Im ψ(x) = cReψ(x). In other
words, it is not necessary that ψ = Reψ +iIm ψ = (1+ic)Reψ : a solution of the Schrödinger
equation with a θ invariant Hamiltonian, satisfying boundary condition (10), can have a non-
vanishing imaginary part. Since it is θψ(x), and not ψ�(x), which satisfies the Schrödinger
equation, non-degeneracy implies that ψBound(x), satisfying (10), is an eigenfunction of PT 1:

θψBound(x) ≡ ψ�
Bound(−x) = eiωψBound(x). (11)

From the definition (8) and equation (11) we find that for a bound state j (x) vanishes:

jBound(x) = 0. (12)

Equations (9) and (12) indicate that j (x) could serve as a probability current density: j (x) is
conserved, and jBound(x) = 0, as one would expect [15].

Thus, the scalar product (4) leads to a results similar to those of conventional quantum
mechanics, and one could consider (4) as a necessary ingredient for describing and interpreting
quantum mechanical problems with PT invariant Hamiltonians.

The subtlety appears when one address the question of normalization. Let us examine the
diagonal form:

(ψ |ψ) =
∫

R
dx ψ(x)θψ(x) =

∫
R

dx ψ(x)ψ�(−x) ≡
∫

R
dx ρ(x). (13)

If (ψα|ψβ) is understood as the transition probability amplitude between the states ψα and ψβ

the expression (13) is the transition amplitude from ψ into the same state, and the physical
requirement is (ψ |ψ) = 1.

The integrand in (13) has a non-zero imaginary part but since Im ρ(−x) = −Im ρ(x) we
readily obtain that (ψ |ψ) is real:

(ψ |ψ) =
∫

R
dx (Reψ(x)Reψ(−x) + Im ψ(x)Im ψ(−x)). (14)

The distinctive feature is that the expressions (13), (14) are not positively defined, and thus
(ψ |ψ) cannot be normalized to unity. A positively defined expression is achieved only when
ψ is an even function, ψev(−x) = ψev(x):

(ψev|ψev) =
∫

R
dx ψev(x)ψ

�
ev(x) � 0 (15)

1 Numerical solution for V (x) = ix3 shows that for bound as well as for excited states Reψ(x) = Reψ(−x) and
Im ψ(x) = −Im ψ(−x), i.e. in this case θψ(x) = ψ(x) [17].
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but in general, the diagonal form (13) can be positive, negative or zero. For example, when
ψω is an eigenfunction, i.e. θψω(x) ≡ ψ�

ω(−x) = eiωψω(x), we have

(ψω|ψω) =
∫

R
dx (cosω[Re 2ψω(x) − Im 2ψω(x)] − 2 sinωReψω(x)Im ψω(x)). (16)

Therefore, F is a linear space with an indefinite metric; in particular, (ψ |ψ) = 0 does not
imply ψ = 0.

In [16] it was suggested that the norm (in a complex x-plane) is given by∫
C

dx ψ2(x) (17)

and it was conjectured that in the momentum space this norm could be positively defined. Since
we are considering motion on a real line R, using the Fourier transform it is straightforward
to demonstrate that

(ψ |ψ) =
∫

Rp

dp ψ̃(p)ψ̃�(−p) (18)

i.e. the expressions (13) and (17) ((17) is the special case of (13), realized when θψ(x) = ψ(x))
are not positively defined on the momentum real line either.

Thus, F ∈ ψ is a space with an indefinite metric and we need to specify a space where a
scalar product is defined via (4), and at the same time, it is possible to realize the probabilistic
interpretation of a θ -symmetric quantum mechanical problem. To do so, let us recall some
basic statements and theorems from the theory of spaces with an indefinite metric [18].

3. Normalization of state vectors: Krein space

For any element ψ of an indefinite metric space F there are three possibilities: the vector ψ
is positive, {ψ+ ∈ F++ : (ψ+|ψ+) > 0}, or negative, {ψ− ∈ F−− : (ψ−|ψ−) < 0}, or
neutral {ψ0 ∈ F0, ψ0 �= 0 : (ψ0|ψ0) = 0} (clearly the zero vector ψ = 0 is neutral). In
general, F contains all three subspaces. The semidefinite subspaces F+ and F− are defined
as those with non-negative and non-positive scalar products: {ψ+ ∈ F+ : (ψ+|ψ+) � 0} and
{ψ− ∈ F− : (ψ−|ψ−) � 0}.

In the semidefinite subspace the scalar product (ψα|ψβ) is insensitive to ψ0. To see this,
let us use the Schwarz inequality, valid in F± [18]:

|(ψ0|ψ±, 0)|2 � (ψ0|ψ0)(ψ±, 0|ψ±, 0). (19)

From (19) it follows that ψ0 is orthogonal to any ψ ∈ F : (ψ0|ψ±, 0) = 0. Therefore, a neutral
vector does not affect the value of the scalar product: (ψα +aψ0|ψβ +bψ0) = (ψα|ψβ). Since
(ψ0|F±) = 0 and (ψ0|ψ0) = 0, below we shall consider ψ+ ∈ F+ and ψ− ∈ F−, excluding
the subspace F0 from the space of states F . Therefore, the first constraint we impose on the
space of state vectors is that F is an indefinite metric space not containing neutral vectors ψ0.

A second constraint originates from the fact that, in general, F might be not decomposable
as an orthogonal sum of F+ and F− [18], and for this reason it is impossible to introduce the
norm into the whole space F . A space with an indefinite metric F can be decomposed as
an orthogonal sum of F+ and F− when F+ and F− are orthogonal with regard to the scalar
product defined into the whole F :

(F+|F−) = 0. (20)

In this case, i.e. when F = F+ ⊕ F−, subspaces F± can be completed to Hilbert spaces
with the norms ‖ψ‖ = √

(ψ |ψ) when ψ ∈ F+, and ‖ψ‖ = √−(ψ |ψ) when ψ ∈ F−.
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This is a definition of a Krein space, an indefinite metric space which admits an orthogonal
decomposition in which F± are complete, and where the positively defined norm can be
introduced [18]. Based on these properties, we suggest that the space of states of θ -symmetric
quantum mechanics is a Krein space.

Let us describe the prescription for introducing a norm in the Krein space [18]. Define
projection operators &± satisfying relations

&±F = F± &+ + &− = 1 &+&− = 0. (21)

Operators &±, &±ψ = ψ± cannot be introduced in just any space with an indefinite metric:
the necessary condition is equation (20), i.e. F has to be the Krein space (it can be proved
that any space with an indefinite metric and positively defined norm can be mapped to a Krein
space [18]).

The next step is to consider a linear unitary operator J which maps F onto itself, F J−→ F :

J ≡ &+ − &−. (22)

It can be demonstrated that J is a bounded self-adjoint operator, and F± is the eigenspace of
J with eigenvalues ±1.

The operator J enables us to introduce a (positively defined) scalar product (ψ |φ)F into
the whole Krein space (i.e. for all ψ, φ ∈ F) according to the formula

(ψ |φ)F ≡ (Jψ |φ) = (ψ+|φ+) − (ψ−|φ−). (23)

Note that when ψ ∈ F+ and φ ∈ F−, i.e. when (ψ |φ) = 0 (see equation (20)), it follows
from (23) that (ψ |φ)F = (ψ |0) − (0|φ) = 0.

Let us now apply the prescription (23) to an indefinite metric space where the scalar
product is given by (4):

(ψ |φ) =
∫

R
dx ψ(x)(θφ(x)) =

∫
R

dx ψ(x)φ�(−x) (24)

and F = F+ ⊕ F−.
To find the operator J and thus to find out the norm, we introduce

K± ≡ 1 ± P
2

(25)

where P is the space reflection operator: Pψ(x) = ψ(−x). From P(K+ψ(x)) = K+ψ(x)

we obtain

(K+ψ |K+ψ) =
∫

R
dxK+ψ(x)(K+ψ(−x))�

=
∫

R
dxK+ψ(x)(P(K+ψ(x)))� =

∫
R

dxK+ψ(x)(K+ψ(x))� > 0 (26)

i.e. when the scalar product is given by (4), it follows that the positive vector ψ+ is ψ+ = K+ψ ,
and the comparison with (21) gives

&+ = K+. (27)

Arguments similar to those leading to (27) result in &− = K−, and from (22) and (25) we
obtain that in our case J is the space reflection operator:

J = &+ − &− = K+ − K− = P. (28)

Now from (23), (24) and (28) it follows that the positively defined scalar product into the
whole Krein space F = F+ ⊕ F− is

(ψ |φ)F ≡ (Jψ |φ) = (ψ |Pφ) =
∫

R
dx ψ(x)(Pφ(−x))� =

∫
R

dx ψ(x)φ�(x) ≡ 〈ψ |φ〉 (29)
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i.e. the Hilbert space scalar product is reproduced. The norm in a Krein space with the scalar
product (4) is therefore given by

‖ψ‖2 = (ψ |Jψ) = (ψ |Pψ) =
∫

R
dx ψ(x)ψ�(x) ≡ 〈ψ |ψ〉 � 0. (30)

Expression (30) satisfies the renormalizability requirement for a vector of physical state ψ—
since ‖ψ‖ =

√
‖ψ‖2 � 0, one can always renormalize: ψ → ψ ′ where ‖ψ ′‖2 = 1. Note that

‘moving backwards’, i.e. suggesting that according to (30) the amplitude of transition from
ψα to ψβ is given by 〈ψα|ψβ〉 = ∫

dxψαψ
�
β(x), will lead to a wrong result as the vectors

corresponding to different eigenvalues will no longer be orthogonal (see equation (6)).

4. Probability and average value in θ-symmetric quantum mechanics

We shall not consider the case when the Krein space reduces to F+ or to F−, i.e. when the space
of states is a Hilbert space. In other words we assume that Im V (x) cannot be removed by a
similarity transformation. The case when a quantum mechanical system with non-Hermitian
Hamiltonian can be mapped onto the one defined in a Hilbert space with a positively defined
scalar product is discussed in [10].

We suggest the following expression for the amplitude describing the transition from the
state ψ

j
α to the state ψ

j ′
β :

A
jj ′
αβ = θA

j ′j
βα = (ψ

j
α |ψj ′

β )√
(ψ

j
α |ψj

α)

√
(ψ

j ′
β |ψj ′

β )

(31)

where α, β label eigenstates of the Hamiltonian, and j, j ′ = ±1 are the eigenvalues of the
operator J (see (22)).

For j �= j ′, from the definition of the Krein space as an orthogonal sum, (F+|F−) = 0
implies that A+−

αβ = 0. Note that if we define Ajj ′
αβ not via the scalar product (4) but by the scalar

product in the Hilbert space, the ‘± orthogonality’ is still valid, since we have (F+|F−) = 0
as well as 〈F+|F−〉 = 0. However, if both ψα and ψβ belong only to F+, or only to F−, an

amplitude written in terms of 〈ψj
α |ψj ′

β 〉 will not vanish. The reason for choosing amplitude as

in (31) is that (ψj
α |ψj ′

β ) guarantees orthogonality when ψ
j
α and ψ

j ′
β belong to the same as well

as to different subspaces of F .
The fact that the space of state vectors does not contain the neutral vector leads to a

superselection rule in θ -symmetric quantum mechanics: if ψ+
α is a state vector and ψ−

β is a
state vector, φ = cαψ

+
α +cβψ

−
β does not correspond to any physical system. Since the equation

(φ|φ) = cαc
�
α(ψ

+
α |ψ+

α ) + cβc
�
β(ψ

−
β |ψ−

β ) = 0 can have a non-trivial solution, φ cannot belong
to F . Unlike in the Hilbert space, the superposition principle acts separately in subspaces
ψ ∈ F+ and ψ ∈ F−. A linear superposition of ψ+ and ψ− is not an element of F . This
superselection rule resembles the one in quantum field theory, where a linear superposition of
states with the different quantum numbers (e.g.)proton+)electron), or superposition of different
representations of the Poincaré group (e.g. )spin 1 + )spin 1/2) is not a state vector [19]. We
interpret the eigenvalues ±1 of the operator J as (conserved) quantum numbers in θ -symmetric
quantum mechanics; consequently, one can describe θ -symmetric quantum mechanics as a
conventional quantum mechanics in a J -invariant space (for a description of J -invariant space
see [18]).

Using the inequality (19) we obtain that the amplitude A
jj ′
αβ satisfies conditions similar to

those in quantum mechanics [15]:

|Ajj ′
αβ | � 1 Ajj

αα = 1. (32)
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Thus, although the space of states contains negative vectors, definition (31) does not lead to
inconsistencies caused by an indefinite metric.

Another point of interest is the average values. In analogy with quantum mechanics we
suggest that an average value of the operator Ô in a state ψj is

Av(Ô) = (ψj |Ôψj)

(ψj |ψj)
. (33)

Let us consider the time derivative of the average value (since ψ0 /∈ F , the denominator in (33)
can always be normalized to 1, or −1; the derivation below is valid for either sign):

d

dt
Av(Ô) =

∫
R

dx

(
∂(θψ(x, t))

∂t
Ôψ(x, t) + (θψ(x, t))Ô ∂ψ(x, t)

∂t

)
. (34)

Using the time-dependent Schrödinger equation with a θ invariant Hamiltonian

i
∂ψj (x, t)

∂t
= Ĥψj(x, t) − i

∂(θψj (x, t))

∂t
= Ĥ(θψj (x, t)) (35)

it is straightforward to demonstrate that

d

dt
Av(Ô) = iAv(ĤÔ − ÔĤ). (36)

Therefore, in a θ -symmetric quantum mechanics the Heisenberg equation

i
dÔ
dt

= ÔĤ − ĤÔ (37)

is satisfied. Of course, operator equation (37) is defined in space F with the scalar product (4).
Note that the scalar product (4) satisfies the relation (ψ |Ôφ) = (θÔθ−1ψ |φ), the analogy

of which in a Hilbert space is 〈ψ |Ôφ〉 = 〈Ô†ψ |φ〉. Since a self-adjoint operator in a Hilbert
space may be not self-adjoint in a Krein space, expression (33) can be related to observables
only when Ô is θ invariant, as are the Hamiltonian, the momentum or the operator ix̂. In
connection with the notion of self-adjoint operators in Krein space we refer to the following
theorem: the spectrum of an operator Ô which is symmetric (i.e. (Ôψ |φ) = (ψ |Ôφ) for every
ψ, φ ∈ F), and positive (i.e. (Ôψ |ψ) � 0 for every ψ ∈ F), is real [18]. According to
this theorem, the necessary condition for Ô to have a real spectrum is that Ô is a symmetric,
i.e. θ invariant operator. The spectrum will be real if a θ invariant operator Ô is positive, the
case necessary to investigate separately for every given operator. This problem lies beyond
the scope of the present paper.

5. Discussion

We have considered a quantum mechanical problem with a θ ≡ PT invariant Hamiltonian
Ĥ = −∂2 + V (x), θV (x) ≡ V �(−x) = V (x), Im V (x) �= 0. Requiring orthogonality and
using the symmetry of the Hamiltonian we found that the scalar product in the space of state
vectors F is given by (4), which, in turn, leads to the conclusion that F is a space with an
indefinite metric. The requirement of normalizability leads to the further constraints on the
space of state vectors and as a result, F can be identified with the Krein space. The latter can be
(loosely) defined as the orthogonal sum of two Hilbert spaces, with positively and negatively
defined scalar products respectively. Excluding neutral vector ψ0 �= 0 : (ψ0|ψ0) = 0 from
physical states we have arrived at a superselection rule in F : not every superposition of state
vectors belongs to F . The transition amplitude (31), and the average value (33) can be defined
in a self-consistent way in F .
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The superselection rule often occurs in quantum field theory, where, unlike in quantum
mechanics, there is no one-to-one correspondence between the pure states and the rays of
space where the algebra of field operators is realized [19]. In other words, the space of states
in quantum field theory is not a linear space, but rather an orthogonal sum of linear spaces [19]:
the same is true in the θ -symmetric quantum mechanics.

Another aspect of θ -symmetric quantum mechanics, not realized in conventional quantum
mechanics, is the space with an indefinite metric. Again, this feature appears in certain field-
theoretical models: the two well established examples are quantum electrodynamics [19], and
the exactly solvable field theoretical model of Lee [20]. The indefinite metric occurring in
quantum field theory is in a sense ‘fictitious’, since it corresponds to the dynamics of the
redundant degrees of freedom, and the requirement that the dynamics should be realizable in
the space of physical degrees of freedom leads to the reduction of the space of all (physical
and non-physical) states to the space of physical states with positively defined scalar product.
The space of physical states is complete with respect to this scalar product [19, 20]. In a θ -
symmetric quantum mechanics there are no ‘extra, non-physical’ degrees of freedom, therefore
it is impossible to introduce an auxiliary condition allowing us to eliminate a subspace with a
non-positively defined scalar product. In general, the complete set of basis vectors in spaces
with an indefinite metric consists of vectors belonging to F+ as well as to F−, and F is
complete, i.e. it is a Hilbert space relative to the norm 〈ψ |ψ〉 [18]. The reduction of space of
states can result in an incomplete set (the problem of completeness for the potentials ix3 and
−x4 is discussed in [21]) which would make interpretation impossible.

To conclude, it is possible to give a self-consistent interpretation for a PT -symmetric
version of quantum mechanics. The price one has to pay is to abandon the Hilbert space and to
switch to Krein space with an indefinite metric. This feature, as well as the superselection rule,
are not present in formulation of the Hermitian quantum mechanics. Nevertheless, they do
not violate the general requirements of the probabilistic interpretation. The results presented
are valid when Im V (x) is not vanishing. Therefore there cannot be a smooth transition to the
Hermitian case: from the very beginning, depending on the symmetry of the Hamiltonian, the
scalar product is defined either as (|) (Krein space), or as 〈|〉 (Hilbert space).

Needless to say, the discovery of a dynamical system, described in terms of a non-
Hermitian and PT invariant Hamiltonian, will be more than welcome.
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